更多>>精华博文推荐
更多>>人气最旺专家

蔡伸

领域:企业雅虎

介绍:A.“信用中国”网站B.“信用交通”网站C.中国交通报D.国家企业信用信息公示系统12.根据《“互联网+”招标采购行动方案(2017-2019年)》的规定,交易平台应当以在线完成招标投标全部交易过程为目标,逐步消除AB并存的“双轨制”现象。...

刘倩

领域:汉网

介绍:组织学习习w66利来国际,w66利来国际,w66利来国际,w66利来国际,w66利来国际,w66利来国际

利来国际app旗舰厅
本站新公告w66利来国际,w66利来国际,w66利来国际,w66利来国际,w66利来国际,w66利来国际
xy3 | 2019-01-17 | 阅读(278) | 评论(692)
跟踪训练3 甲、乙两人进行围棋比赛,每局比赛甲胜的概率为乙胜的概率为没有和棋,采用五局三胜制,规定某人先胜三局则比赛结束,求比赛局数X的均值.解答解 由题意,X的所有可能值是3,4,5.所以X的概率分布如下表:例4 受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:类型四 均值的实际应用品牌甲乙首次出现故障时间x/年0x≤11x≤2x20x≤2x2轿车数量/辆2345545每辆利润/万元将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;解答(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的概率分布;解答解 依题意得X1的概率分布如下表:X2的概率分布如下表:(3)该厂预计今后这两种品牌轿车的销量相当,由于资金限制,因此只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?请说明理由.解答因为E(X1)E(X2),所以应生产甲品牌轿车.解答概率模型的三个步骤(1)审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的公式有哪些.(2)确定随机变量的概率分布,计算随机变量的均值.(3)对照实际意义,回答概率、均值等所表示的结论.反思与感悟跟踪训练4 某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;解答习题课离散型随机变量的均值第2章 概率学习目标1.进一步熟练掌握均值公式及性质.2.能利用随机变量的均值解决实际生活中的有关问题.题型探究知识梳理内容索引当堂训练知识梳理1.对均值的再认识(1)含义:均值是离散型随机变量的一个重要特征数,反映或刻画的是随机变量取值的平均水平.(2)来源:均值不是通过一次或多次试验就可以得到的,而是在大量的重复试验中表现出来的相对稳定的值.(3)单位:随机变量的均值与随机变量本身具有相同的单位.(4)与平均数的区别:均值是概率意义下的平均值,不同于相应数值的平均数.2.均值的性质X是随机变量,若随机变量η=aX+b(a,b∈R),则E(η)=E(aX+b)=aE(X)+b.题型探究例1 在10件产品中有2件次品,连续抽3次,每次抽1件,求:(1)不放回抽样时,抽取次品数ξ的均值;解答类型一 放回与不放回问题的均值∴随机变量ξ的概率分布如下表:∴随机变量ξ服从超几何分布,n=3,M=2,N=10,(2)放回抽样时,抽取次品数η的均值.解答不放回抽样服从超几何分布,放回抽样服从二项分布,求均值可利用公式代入计算.反思与感悟跟踪训练1 甲袋和乙袋中都装有大小相同的红球和白球,已知甲袋中共有m个球,乙袋中共有2m个球,从甲袋中摸出1个球为红球的概率为从乙袋中摸出1个球为红球的概率为P2.(1)若m=10,求甲袋中红球的个数;解 设甲袋中红球的个数为x,解答(2)若将甲、乙两袋中的球装在一起后,从中摸出1个红球的概率是求P2的值;解答(3)设P2=若从甲、乙两袋中各自有放回地摸球,每次摸出1个球,并且从甲袋中摸1次,从乙袋中摸2次.设ξ表示摸出红球的总次数,求ξ的概率分布和均值.解答解 ξ的所有可能值为0,1,2,3.所以ξ的概率分布为例2 如图所示,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).(1)求V=0的概率;类型二 与排列、组合有关的分布列的均值解答(2)求均值E(V).解答因此V的概率分布如下表:解此类题的关键是搞清离散型随机变量X取每个值时所对应的随机事件,然后利用排列、组合知识求出X取每个值时的概率,利用均值的公式便可得到.反思与感悟跟踪训练2 某地举办知识竞赛,组委会为每位选手都备有10道不同的题目,其中有6道艺术类题目,2道文学类题目【阅读全文】
w66利来国际,w66利来国际,w66利来国际,w66利来国际,w66利来国际,w66利来国际
vwh | 2019-01-17 | 阅读(485) | 评论(153)
跟踪训练3 甲、乙两人进行围棋比赛,每局比赛甲胜的概率为乙胜的概率为没有和棋,采用五局三胜制,规定某人先胜三局则比赛结束,求比赛局数X的均值.解答解 由题意,X的所有可能值是3,4,5.所以X的概率分布如下表:例4 受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:类型四 均值的实际应用品牌甲乙首次出现故障时间x/年0x≤11x≤2x20x≤2x2轿车数量/辆2345545每辆利润/万元将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;解答(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的概率分布;解答解 依题意得X1的概率分布如下表:X2的概率分布如下表:(3)该厂预计今后这两种品牌轿车的销量相当,由于资金限制,因此只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?请说明理由.解答因为E(X1)E(X2),所以应生产甲品牌轿车.解答概率模型的三个步骤(1)审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的公式有哪些.(2)确定随机变量的概率分布,计算随机变量的均值.(3)对照实际意义,回答概率、均值等所表示的结论.反思与感悟跟踪训练4 某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;解答习题课离散型随机变量的均值第2章 概率学习目标1.进一步熟练掌握均值公式及性质.2.能利用随机变量的均值解决实际生活中的有关问题.题型探究知识梳理内容索引当堂训练知识梳理1.对均值的再认识(1)含义:均值是离散型随机变量的一个重要特征数,反映或刻画的是随机变量取值的平均水平.(2)来源:均值不是通过一次或多次试验就可以得到的,而是在大量的重复试验中表现出来的相对稳定的值.(3)单位:随机变量的均值与随机变量本身具有相同的单位.(4)与平均数的区别:均值是概率意义下的平均值,不同于相应数值的平均数.2.均值的性质X是随机变量,若随机变量η=aX+b(a,b∈R),则E(η)=E(aX+b)=aE(X)+b.题型探究例1 在10件产品中有2件次品,连续抽3次,每次抽1件,求:(1)不放回抽样时,抽取次品数ξ的均值;解答类型一 放回与不放回问题的均值∴随机变量ξ的概率分布如下表:∴随机变量ξ服从超几何分布,n=3,M=2,N=10,(2)放回抽样时,抽取次品数η的均值.解答不放回抽样服从超几何分布,放回抽样服从二项分布,求均值可利用公式代入计算.反思与感悟跟踪训练1 甲袋和乙袋中都装有大小相同的红球和白球,已知甲袋中共有m个球,乙袋中共有2m个球,从甲袋中摸出1个球为红球的概率为从乙袋中摸出1个球为红球的概率为P2.(1)若m=10,求甲袋中红球的个数;解 设甲袋中红球的个数为x,解答(2)若将甲、乙两袋中的球装在一起后,从中摸出1个红球的概率是求P2的值;解答(3)设P2=若从甲、乙两袋中各自有放回地摸球,每次摸出1个球,并且从甲袋中摸1次,从乙袋中摸2次.设ξ表示摸出红球的总次数,求ξ的概率分布和均值.解答解 ξ的所有可能值为0,1,2,3.所以ξ的概率分布为例2 如图所示,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).(1)求V=0的概率;类型二 与排列、组合有关的分布列的均值解答(2)求均值E(V).解答因此V的概率分布如下表:解此类题的关键是搞清离散型随机变量X取每个值时所对应的随机事件,然后利用排列、组合知识求出X取每个值时的概率,利用均值的公式便可得到.反思与感悟跟踪训练2 某地举办知识竞赛,组委会为每位选手都备有10道不同的题目,其中有6道艺术类题目,2道文学类题目【阅读全文】
wt3 | 2019-01-17 | 阅读(810) | 评论(409)
2008年全球爆发金融危机,2009年4月伦敦G20峰会决议设立一个全球的金融监管体系,金融稳定委员会在此背景下应运而生,专家称其为“全球央行”。【阅读全文】
khc | 2019-01-17 | 阅读(468) | 评论(334)
不会有人比老板更看重业绩了,因为你的业绩就是老板的利益,问题在于你的业绩不是你眼中的业绩,而是老板眼中的业绩,这两者之间有时相差甚远,更糟的是老板有时是对的,还有一层,老板永远是对的。【阅读全文】
2nf | 2019-01-17 | 阅读(393) | 评论(900)
 条件概率第2章 独立性学习目标1.理解条件概率的定义.2.掌握条件概率的计算方法.3.能利用条件概率公式解决一些简单的实际问题.题型探究问题导学内容索引当堂训练问题导学知识点一 条件概率100件产品中有93件产品的长度合格,90件产品的质量合格,85件产品的长度、质量都合格.令A={产品的长度合格},B={产品的质量合格},AB={产品的长度、质量都合格}.思考1 试求P(A)、P(B)、P(AB).答案思考2 任取一件产品,已知其质量合格(即B发生),求它的长度(即A发生)也合格(记为A|B)的概率.答案答案 事件A|B发生,相当于从90件质量合格的产品中任取1件长度合格,其概率为P(A|B)=思考3 P(B)、P(AB)、P(A|B)间有怎样的关系.答案(1)条件概率的概念一般地,对于两个事件A和B,在已知发生的条件下发生的概率,称为事件B发生的条件下事件A的条件概率,记为.(2)条件概率的计算公式①一般地,若P(B)>0,则事件B发生的条件下A发生的条件概率是P(A|B)=.②利用条件概率,有P(AB)=.梳理事件B事件AP(A|B)P(A|B)P(B)知识点二 条件概率的性质1.任何事件的条件概率都在之间,即.2.如果B和C是两个互斥的事件,则P(B∪C|A)=.0和10≤P(B|A)≤1P(B|A)+P(C|A)题型探究命题角度1 利用定义求条件概率例1 某个班级共有学生40人,其中团员有15人.全班分成四个小组,第一小组有学生10人,其中团员有4人.如果要在班内任选1人当学生代表,(1)求这个代表恰好在第一小组的概率;解 设A={在班内任选1名学生,该学生属于第一小组},B={在班内任选1名学生,该学生是团员}.解答类型一 求条件概率(2)求这个代表恰好是团员代表的概率;解答(3)求这个代表恰好是第一小组团员的概率;(4)现在要在班内任选1个团员代表,问这个代表恰好在第一小组的概率.解答用定义法求条件概率P(B|A)的步骤(1)分析题意,弄清概率模型.(2)计算P(A),P(AB).(3)代入公式求P(B|A)=反思与感悟跟踪训练1 从1,2,3,4,5中任取2个不同的数,记事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=____.答案解析命题角度2 缩小基本事件范围求条件概率例2 集合A={1,2,3,4,5,6},甲、乙两人各从A中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.解 将甲抽到数字a,乙抽到数字b,记作(a,b),甲抽到奇数的情形有(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,6),共15个.在这15个中,乙抽到的数比甲抽到的数大的有(1,2),(1,3),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6),(5,6),共9个,所以所求概率解答引申探究1.在本例条件下,求乙抽到偶数的概率.解答解 在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率2.若甲先取(放回),乙后取,若事件A:“甲抽到的数大于4”;事件B:“甲、乙抽到的两数之和等于7”,求P(B|A).解答解 甲抽到的数大于4的情形有(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有(5,2),(6,1),共2个.将原来的基本事件全体Ω缩小为已知的条件事件A,原来的事件B缩小为AB.而A中仅包含有限个基本事件,每个基本事件发生的概率相等,从而可以在缩小的概率空间上利用古典概型公式计算条件概率,即P(B|A)=这里n(A)和n(AB)的计数是基于缩小的基本事件范围的.反思与感悟跟踪训练2 现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.解答解 设第1次抽到舞蹈节目为事件A,第2次抽到舞蹈节目为事件B,则第1次【阅读全文】
w2l | 2019-01-16 | 阅读(243) | 评论(886)
六.我们的建议给同学们的倡议书写字看书时,保持正确的坐姿,尽量避免长时间在寒冷湿润的环境中低头学习。【阅读全文】
tkq | 2019-01-16 | 阅读(185) | 评论(47)
前言目录目录第一章经济预测概述§经济预测的研究对象§经济预测的发展概况§经济预测的一般原理§经济预测与经济管理的关系§经济预测的基本步骤§经济预测的准确性评价与度量第二章定性预测方法§专家预测方法§德尔菲法§主观概率预测方法§交互影响矩阵分析预测方法第三章回归分析预测方法§一元线性回归分析预测法§多元线性回归分析预测法§可线性化的非线性回归预测法§自回归分析预测法§回归系数动态修正自适应回归预测方法第四章时间序列预测方法§移动平均预测法§指数平滑预测法§具有季节性变动的时间序列分解预测方法§温特斯线性与季节性指数平滑预测方法§自适应过滤预测方法第五章增长曲线预测方法§多项式曲线模型预测方法§指数曲线模型预测方法§修正指数曲线模型预测方法§生长(S)曲线模型预测方法第六章随机时间序列分析预测方法——Box-Jenkins方法§随机时间序列的基本概念§方法的数学模型§模型识别§参数估计§模型检验§模型预测第七章经济预测实际操作中的几个技术性问题§预测数据的收集、分析和整理§预测模型的选择和建立§预测结果的分析参考文献【阅读全文】
n1d | 2019-01-16 | 阅读(810) | 评论(932)
PAGEPAGE1模块综合测评(时间:150分钟 满分:150分)一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。【阅读全文】
w66利来国际,w66利来国际,w66利来国际,w66利来国际,w66利来国际,w66利来国际
hn1 | 2019-01-16 | 阅读(916) | 评论(451)
(×)4.在《关于对公共资源交易领域严重失信主体开展联合惩戒的备忘录》的通知中,公共资源交易平台整合部际联席会议成员单位依据法律、法规、规章和规范性文件规定,可以在公共资源交易领域对惩戒对象采取依法限制失信企业参与国有产权交易活动的惩戒措施。【阅读全文】
fmc | 2019-01-15 | 阅读(556) | 评论(787)
在生物安全实验室中,这些器材和用品主要是保护实验人员免于暴露于生物危害物质(气溶胶、喷溅物以及意外接种等)危险的一种物理屏障。【阅读全文】
uwc | 2019-01-15 | 阅读(287) | 评论(333)
(1)总则:立法目的、适用范围、定义、合作原则、权益风险配置、管理体制、监管原则、财政资金管理;(2)政府和社会资本合作项目的产生【阅读全文】
plr | 2019-01-15 | 阅读(629) | 评论(217)
操作的指导意见》(下称《指导意见》)旨在为血液净化血液净化临床工程技师应为透析室的设备建临床工程技师的日常工作内容和工作方法提供指导立档案,详细记录设备购买、使用、保养、故障、维修、性意见。【阅读全文】
ieu | 2019-01-15 | 阅读(463) | 评论(221)
湖南省综合评标专家培训题库评标方法(三)判断题1.在《关于对公共资源交易领域严重失信主体开展联合惩戒的备忘录》的通知中,公共资源交易平台整合部际联席会议成员单位依据法律、法规、规章和规范性文件规定,在公共资源交易领域对惩戒对象采取两种惩戒措施。【阅读全文】
k1a | 2019-01-14 | 阅读(960) | 评论(732)
共勉之5S活动推行技巧第一章:5S基本概念第二章:整理活动第三章:整顿活动第四章:清扫活动第五章:清洁活动第六章:素养活动第七章:5S示范案例第八章:5S优秀改善展示第九章:5S的推进理念第十章:总结那么,我们的现场是……总结***1、5S不是简单的搞卫生;2、理由与借口;3、检查的重要性;4、奖励与处罚(绩效挂钩);5、领导者的决心和作用;模范带头指导检查纠正偏差6、全员参与;7、逐步思想,持续改进;8、鼓励员工创造和发明;5S的推进理念◇认同◇投入◇目标◇责任◇每日一省+慎独改变自我,形成良好的习惯“5S”的最高荣誉永远属于坚持执行的英雄。【阅读全文】
lw1 | 2019-01-14 | 阅读(297) | 评论(894)
A.全国公共资源交易平台网站B.“信用中国”网站C.国家企业信用信息公示系统D.政府微博9.根据《关于对交通运输工程建设领域守信典型企业实施联合激励的合作备忘录》的规定,对交通运输工程建设领域守信典型企业采取在AC上公布和宣传守信典型企业守信状况,进一步增强社会影响力的激励措施。【阅读全文】
共5页

友情链接,当前时间:2019-01-17

利来国际官网 w66利来娱乐公司 利来国际网址 国际利来旗舰厅 利来国际W66
利来国际w66手机版 w66利来 利来最给利的网站 利来ag 利来国际在线客服
利来国际家居集团 利来国际家居集团 利来国际最给利的老牌最新 利来国际w66备用 利来网页
利来 利来国际w66.com 利来国际官网 利来国际旗舰版 利来国际家居集团
大化| 晋州市| 阿拉善右旗| 米易县| 宁陵县| 文山县| 佛教| 鄂伦春自治旗| 岗巴县| 买车| 汾西县| 焉耆| 勐海县| 东乡族自治县| 林口县| 区。| 绥化市| 汨罗市| 陆丰市| 青河县| 晋城| 宁德市| 共和县| 白河县| 屯门区| 康保县| 马边| 大同市| 肃北| 弥勒县| 康平县| 云霄县| 江川县| 木里| 绥德县| 雷波县| 合阳县| 焦作市| 尤溪县| 托里县| 黑山县| http://m.57470967.cn http://m.95871804.cn http://m.63553703.cn http://m.83880866.cn http://m.97139268.cn http://m.10393822.cn